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Abstract

Object removal is an open research problem with many
applications and algorithms producing unsatisfactory re-
sults. The outputs are unpredictable, of poor quality, and
semantically incoherent. In our work, we tackle one of these
issues and try to create semantically coherent outputs by re-
moving the context associated with the object as well. We
focus on shadows and aim to develop a framework to auto-
matically remove objects with their corresponding shadow.
Traditionally the task of object removal was done using se-
mantic segmentation coupled with an inpainting technique.
However, such a framework fails to capture the context as-
sociated with the removed objects and therefore has residu-
als such as reflections or shadows still remaining in the im-
age. Furthermore, free-form-based inpainting models per-
form well in removing objects from an image but require hu-
man annotators to provide the masked input for such mod-
els.

In this project, we develop an end-to-end framework to
tackle these problems. We perform an in-depth analysis to
conclude that a framework consisting of LISA coupled with
DeepFillv2 shows the best result on the said task. Further,
we introduce a heuristic function to improve the quality of
the output and obtain excellent results.

1. Introduction

Object removal has immense application in the field of
video and photo editing. Several tools and software on-
line have been developed to handle these tasks. The task
of object removal has traditionally been handled using two
approaches. The most common method to handle this task
is by generating semantic segmentation of the input image,
masking the desired segment, and then using an inpainting
algorithm to remove the desired object. A significant draw-
back of such methods is that they fail to capture the associ-
ated context for the removed object, as seen in Fig 1.

Since object removal is closely related to image inpaint-
ing, a lot of recent research has focused on handling this
task using an inpainting algorithm. Traditional inpainting
algorithms only allowed masked bounding boxes for in-
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(a) Original image

(b) Car removed

Figure 1: Object removal task leaving behind shadow

painting. However, modern frameworks have given us the
ability to do free-form inpainting, which is more suitable
for the task of object removal. These methods, however,
require a lot of manual intervention. A human annotator
has to manually mask the region of the images they want to
remove and then feed the altered image as an input to the in-
painting framework. This method causes a lot of overhead
and hence is unsuitable.

In this project, we try to develop a framework to han-
dle the task of object-context removal with minimal hu-
man intervention. For the scope of this project, we focus
only on‘Shadows’ as the context of an object. To han-
dle the task of context-associated object removal, we first
use the Light Guided Instance Shadow-object Association
(LISA) [7] framework to map the objects with their respec-
tive shadow. The model is trained on a new dataset called
Shadow-OBject Association(SOBA) which consists of fine-
grained annotations of objects and their shadows, as shown
in Fig 2. The crucial aspects of the architecture are further



explained in section 3.

Figure 2: Instance shadow masking in SOBA dataset

We then augment the pipeline with a free-form image in-
painting framework. We experimented with two recent free-
form image inpainting algorithms for our project. Firstly,
we use the DeepFillv2 framework [ 0], which uses a gated
convolution network. We compare the results of this frame-
work with another free-form inpainting framework, deep
image prior [5]. Deep image prior suggests that the struc-
ture of a generator network is adequate to capture a large
number of low-level image statistics. It uses a randomly-
initialized neural network as a constructed prior in typical
inverse problems like denoising, superresolution, and in-
painting, with excellent results.

With the above two modules, we found that due to the
inaccuracy of the segmentation module, we obtained weird
artifacts in the final output after inpainting. Therefore, sim-
ply coupling these two segments was not enough for object-
context removal as LISA failed to produce very fine-grained
segmentation maps and could not classify pixels near the
edge of the objects accurately. This can be seen in Fig 3
where removing even a simple pole does not provide re-
alistic output. We implement our own heuristics between
the two modules and present the result to further mitigate
these problems. We experiment with breadth-first search al-
gorithm and Superpixel generation algorithms to enhance
the quality of masked images formed as the output of the
LISA framework. The results show that adding our heuris-
tic functions dramatically improves the quality of the image
formed.

To summarize, our contributions to the project are
threefold:-

* Firstly, we create an end-to-end framework that au-
tomatically removes an object and its corresponding
shadow with minimal human intervention.

* To improve the quality of the results, we propose and

(b) Output Image

Figure 3: Result of simply coupling LISA and DeepFillv2

implement different heuristics that improve the seg-
mentation result from LISA. With simple algorithms,
we can see immense improvements in the output.

* Finally, in this work, two different inpainting algo-
rithms are compared, which approach the problem dif-
ferently. We compare the qualitative results from both
and present our analysis for the same.

2. Related work

Instance Shadow Detection Traditional semantic
segmentation do not take context of an object into account
[11], [4]. However, earlier works in Computer Vision
models that aimed at finding or removing shadows from
other objects used edge color separations and physical illu-
mination. Wang et al. [7] aimed to find individual shadows
through the image along with the associated object that
cast them. They prepared a new dataset SOBA - Shadow



OBject Association with shadow instance masks and
shadow-object association masks. The authors introduced
LISA - Light-guided Instance Shadow-object Association
which systematically finds (i) individual shadow and object
instances, (ii) shadow-object associations, and (iii) light
direction for each association. It uses ConvNet to extract
semantic features from the image. They formulate SOAP
- Shadow Object Association Precision as a quantitative
evaluation metric and demonstrate the applicability of
their work in shadow removal editing and detecting the
direction of the light. We use LISA as the backbone for our
architecture.

Inpainting Image inpainting is an essential vision task
for modification, restoration, quality enhancement, etc.
Although it has been around for several years, the recent
developments in image processing techniques and the need
for digital image editing has given automatic inpainting
surge in popularity. We surveyed several methods [8], [3],
[5], [10] and used two of them to compare outputs.

Ulyanov et al.’s Deep Image prior [5] serves as a bridge
between the two inpainting methods - learning-based which
uses CNNs, and non-learning based using self-similarity
and other handcrafted image priors. The authors show that
it isn’t just the learned image prior from a large dataset
that helps deep convolution networks get good results,
but infact, it is the structure of the model that can capture
low-level image statistics prior to any pre-training. For
common inversion problems such as inpainting, they show
randomly-initialized neural network also gives good results
when used as a handcrafted image prior. They test on
two inpainting settings, one, randomly drop 50% of the
pixels, and two, mask large holes. In the second task,
which is relevant to our work, the authors admit since this
is a non-learning based method, Deep Image Prior isn’t
expected to work on highly semantic hole inpainting such
as faces, but they showed some examples where it outputs
approximately desired result. They concluded that having a
deeper architecture network and including skip-connections
that improve segmentation tasks such as recognition are
unfavorable for inpainting using Deep Image Prior.

Feedforward networks with deep convolution have been
the go-to for intricate inpainting holes involving faces,
complex scenes, and objects. These networks learn from
large datasets to retain semantics and transfer content to
new images. However, because of convolutions filters’ in-
ability to distinguish invalid from valid pixels in the image,
they often render outputs with visual artifacts with ghosting
effects, blurry reconstruction, and color discrepancy. Yu et
al. [10] proposed gated convolution for free-form image
inpainting. Their model learns the feature selection method

dynamically across all layers for each channel and spacial
location. Gated convolution works better when masks are
arbitrarily shaped and can have complex conditional inputs
such as sparse sketch beside the RBG channels. They also
introduce SN-PatchGAN - a patch-based discriminator.
These help improve color consistency and leads to overall
higher-quality outputs than previous state-of-the-art on
benchmark datasets such as CelebA-HQ faces and Places2
natural scenes. Gated convolution work builds up from
“Generative Image Inpainting with Contextual Attention”
[O] by the same authors. In this work, they experimented
with a two-stage network. In the first stage, to rough
out the masked content, a dilated convolution network is
trained with a reconstruction loss. In the second, contextual
attention is used to generate unknown patches from known.
This approach showed good and promising outputs but was
very slow.

Superpixel Grouping pixels into grids with meaning-
ful, perceptually distinct boundaries forms the basis of
several image manipulation tasks. Multiple algorithms
have been proposed for this purpose such as [0], [2], etc.
Achanta et al. [1] compared five state-of-the-art superpixel
methods based on adherence to the boundary (arguably
the most important property), processing speed, impact
on segmentation performance, and quantitative. They
also introduced an adapted k-means clustering approach -
Simple linear iterative clustering (SLIC). The algorithm be-
sides the image just needs one parameter, ‘k’ the expected
approximate number of superpixels, each about the same
size. Empirically, they concluded SLIC outperformed other
surveyed methods. In this work, we use SLIC along with
our heuristic algorithm to produce masks.

3. Method

The pipeline developed in this work, as shown in Fig. 4
can be divided into three major components. These com-
ponents and their architectures are explained in subsequent
subsections.

3.1. Instance Shadow Detection (ISD)

The first module utilized is instance shadow detection
(ISD) [7]. The model developed by the authors in [7], called
Light-guided Instance Shadow-object Association, can au-
tomatically predict shadows, objects, their associations, and
the direction of the light source for an input image. It pro-
duces pixel-level segmentation and the bounding boxes for
each segmented entity. It learns from jointly minimizing
the loss of all the outputs. For our purpose, we filter out and
utilize only the essential outputs of the model, i.e., the pixel
level segmentation of the object, its shadow, and their asso-
ciation. For each object-shadow association, we save a sep-
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Figure 4: Proposed Pipeline

arate mask, by masking out the single object and its shadow,
and keeping the remaining image as background. This en-
ables the user to select which object needs to be removed,
and the corresponding mask can be fed into the inpainting
component.

The outputs produced from the pre-trained model suffer
from the drawback that they fail to classify pixels accurately
on the boundary of the object/shadow as shown in Fig 5.
This results in nonsensical outputs from the pipeline as cer-
tain artifacts remain in the image and mask used as input to
the inpainting module.

Figure 5: LISA segmentation drawback (the mask is not
able to capture the entire shadow or even the entire object

3.2. Heuristic for improvement

To mitigate the issue from LISA, we implement post pro-
cessing algorithms on the output of ISD and compare their
effects.

* Breadth-First Search (BFS) - Initially to test our hy-
pothesis that the inpainting module would perform bet-
ter if the entire object is masked properly i.e. with
no remaining edges, we implement a simple BFS and
mask the neighboring pixels up to a particular distance

from the actual object/shadow mask. We vary the dis-
tance using the size of the object masked. For exam-
ple, if the original object mask has ‘n’ pixels, we run
the BFS up to a distance of x% of n. x is varied be-
tween 0.067, 0.1, 0.2 and we found the best result to
be with x = 0.2. As expected the pipeline worked sig-
nificantly better and was able to mask the entire object
when given sufficient margin Fig. 6. However, this
algorithm does not take into account the semantics of
an object and just increases the size of the mask. This
could have the side effects of covering some neighbor-
ing objects that should not be removed and also would
be unable to capture different shapes in the remaining
region.

* Superpixel - To incorporate semantics into the algo-
rithm and improve the output quality we replace the
BFS algorithm with superpixel generation. We first
cluster neighboring pixels into a superpixel using the
method Simple Linear Iterative Clustering (SLIC) [1].
This method adapts k-means clustering to create super-
pixels that are related semantically in low-level fea-
tures. Then, we check each superpixel and count the
number of pixels masked above a certain threshold we
mask that entire superpixel. This algorithm can gen-
erate a minimal mask that can cover the entire image
as shown in Fig. 6. The heuristic only masks semanti-
cally related pixels and avoids some of the drawbacks
of the previous approach. However, for our project, we
were unable to find a generic parameter structure that
worked well for each image, and therefore for further
experiments, we use the BFS algorithm itself.



(c) Mask with BFS margin = 0.33%

(d) Mask with Superpixel k=160

Figure 6: Optimal masking algorithm comparison

3.3. Inpainting

The third module is image inpainting, which takes in
the input image and the corresponding mask and fills the
masked region with information relating to the surrounding
context. We also study different inpainting algorithms and
choose the following two architectures that employ vastly
different concepts to perform the task. The common aspects
of both the architectures are that they are capable of han-
dling free-form input masks and claim to perform well only
when a maximum of 20-30% of the input image is masked.

* Deep Image Prior - The paper relies on the “structure”
of the network to capture low-level information before
any learning. The authors fit a generator network to a
single image that is degraded (for example masked ob-
ject, noisy image, etc.). This method learns separately
for each test image and therefore is extremely slow for
testing each image, however it saves the cost of train-
ing on a large dataset. The problem is formulated as an
energy minimization problem.

0" = argmin B(fy(2); 20), 2" = fo- (2)

For the inpainting task, the energy term is

E(z;20) = [|(z — 20) © m]|

where @ is the element wise product, xg is the initial
image, x* is the final output image, and x is iterative
image being generated by the model. z is the initial
random noise and fy(z) is the function that maps noise
to the image space. Also, m € {0, 1}7>W . We utilize
the same network which the authors have utilized for
the “library” image, as devising a separate network for
each test image is beyond the scope of our project.

* DeepFillv2 - We use DeepFillv2 for comparison with
deep image prior. The main aspect of the network is
the gated convolution, which enables information from
the unmasked pixels to slowly propagate to the masked
pixels. Also, they use a contextual attention branch to
improve the quality of the output. Finally, the gener-
ated output along with its mask is sent to the discrimi-
nator which categorizes each patch as “real” or “fake”.

4. Experiments and Results

We have evaluated the proposed pipeline by varying dif-
ferent critical components of the architecture. Our pipeline
contains two key modules dealing with segmentation and
inpainting tasks. Hence, we need to evaluate these compo-
nents individually and examine the pipeline’s final results.
The upcoming subsections provide a detailed overview of
the experimental setup based on segmentation, inpainting,
and heuristics techniques.

4.1. Datasets and Pretrained Models

We have conducted experiments on two different pre-
trained models for our segmentation task. The baseline
model used for comparison is referred from the following
github' repository. LISA uses the SOBA data set for train-
ing which was created by the authors themselves. Simi-
larly, for the inpainting task also, we have used two differ-
ent pre-trained architectures, namely DeepFillv2 and Deep
Image Prior. The latter does not require any training dataset,
whereas DeepFillv2 uses Places2, and CelebA-HQ faces as
datasets.

Since our proposed pipeline comprises two distinct tasks,
different sets of evaluation metrics are required to examine
the results. Table 1 summarizes the evaluation metrics used
for different models and tasks based on our proposed idea.
For ISD, the results are evaluated using Shadow-Object Av-
erage Precision (SOAP), which is based on the idea of tra-
ditional average precision (AP) with the intersection over

Thttps://github.com/sujaykhandekar/ Automated-objects-removal-
inpainter



Table 1: Evaluations Metrics

Task Model Maetrics

Segmentation Base Model | PSNR
ISD SOAP

Inpainting DeepPrior PSNR
DeepFillv2 | I1/ls

union (IoU). However, the metric considers the shadow-
object association while determining valid positive samples.
Similarly, for quantitative analysis of DeepFillv2 and Deep-
Prior, we have used [1/ls and PSNR, respectively. In terms
of model specification, the pre-trained DeepFillv2 uses
4.1M parameters along with an inference time of 0.21 sec-
onds per image on single NVIDIA(R) Tesla(R) V100 GPU
and 1.9 seconds on Intel(R) Xeon(R) CPU @ 2.00GHz for
images of resolution 512 x 512 on average, regardless of
mask size.

4.2. Evaluation Scenarios

Based on the previous discussion over possible config-
urations, we have conducted the experiments for four dif-
ferent combinations. Table 2 Summaries the pipeline for
three different cases. We have applied different heuristic
methods with different hyperparameter values((margin and
partitions) in each case.

Table 2: Experiment Cases

Pipeline
Case 1 | Base Model
Case 2 | ISD + Heuristic + DeepPrior
Case 3 | ISD + Heuristic + DeepFillv2

4.2.1 Result Case 1: Base Model

We have used an architecture built upon deeplabv3 and
edge-connect for our baseline model. This architecture also
uses the similar idea of image segmentation and inpaint-
ing to achieve the object removal task. However, it does not
consider the context associated with the removed object. As
shown in Fig 7, the baseline could not remove the associated
shadow, but our proposed pipeline was able to remove the
object along with the context. The results produced by this
baseline mainly fails due to the poor performance of object
and context association in the segmentation task.

4.2.2 Results Case 2: ISD and DeepPrior

We applied different heuristic methods to finetune the re-
sults from ISD and make them more suitable for the in-
painting task and then apply the Deep Image Prior Architec-

(c) Our Model (ISD+DeepFillv2+BFS)

Figure 7: Qualitative comparison with the baseline

ture. We have observed that the results delivered from this
pipeline are not that aesthetic. Even though the model suc-
cessfully associated the object and its shadow in most cases,
the inpainting results were less realistic than the DeepFillv2
(Fig. 8).

4.2.3 Results Case 3: ISD and DeepFillv2

We evaluated this pipeline by incorporating the heuristic
functions described in the previous section to compare var-
ious scenarios. Based on the results, we have a few obser-
vations.

Firstly, the architecture delivers well irrespective of the
number of primary objects in the image. We tested with a
single object and its shadow and multiple objects and their



(c) Result result using DeepFillv2

Figure 8: Analysis between result of Case 2 and Case 3

shadows; in both cases, our model was able to remove the
objects and their associated shadows (Fig. 9).

Secondly, the results showcase a relationship between
the size of the object we are trying to remove and the out-
put quality. It was observed that the larger object size leads
to poor quality output. However, output quality is quite re-
alistic if the background is less complex (solid or less tex-
ture). The primary reason for this observation was that the
pre-trained DeepFillv2 model delivered good results while
completing only 30% of the image (Fig 10).

Finally, results also show that in most cases, the heuris-
tic approach based on superpixel performs much better if
the object shape is complex than the BFS-based approach.
However, superpixel algorithm is difficult to generalize
across images due to many hyperparameters. Fig 6 shows
that with superpixel, we can achieve minimal mask to re-
move an object with context.

5. Conclusion

Removing objects entirely from a scene along with asso-
ciated context is an open problem. The effect an object has
on its environment is complex and may include shadows,
reflection, and other indentations. For example, when a per-
son jumps from a trampoline, the cupping on the surface of

(c) Multiple Objects

Figure 9: Removing objects along with associated shadow

the trampoline must be removed too along with the person
to make the altered scene believable. In this work, we ex-
plored shadow-object removal. Shadows by themselves are
complex phenomena to handle - in cases such as multiple
shadows, crooked shadows due to obstructions, overlapping
shadows with surrounding objects, soft shadows, etc. We
hope to pragmatically improve the cases mentioned above.

Our pipeline consists of 3 modules - one, instance
shadow detection, two, heuristic, and three an inpainting
module, DeepFillv2, or Deep Image Prior. The advantage
of the pluggable nature is that we could easily swap our in-
dividual components in case new research is published that
is better suited. The drawback however is that since it is not
trained in one go, the model doesn’t itself learn for example
which segmentation gives the best output. Qualitatively, we
determine pipeline consisting of Instance Shadow Detection
+ BFS + DeepFillv2 produces the most desirable outputs.
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(a) Original Image

(c) Final Output

Figure 10: Removing objects along with associated shadow
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