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Abstract
Recently, Active Learning (AL) approaches
in Natural Language Processing (NLP) use
Masked Language Modelling (MLM) objec-
tive to adapt a pre-trained model for a down-
stream task. Some of the approaches rely on
domain-specific label inefficient training on the
entire unlabeled data pool. In this paper, we
argue that MLM loss is not suitable for the
mentioned task. Hence, we propose a super-
vised contrastive loss to generate discriminative
embeddings for text classification tasks. Our
proposed loss obtains significant improvement
over the MLM loss on the TREC and SST-2
dataset while only utilizing the fraction of the
data.

1 Introduction

Deep neural networks (DNNs) have fueled an ex-
plosion in machine learning research over the last
decade, regularly generating state-of-the-art out-
comes in a variety of supervised tasks. This is
particularly true in the field of Natural Language
Processing (NLP), where DNNs have outperformed
traditional statistical approaches on all fundamen-
tal NLP tasks (Li, 2017). However, the effective-
ness of data-hungry DNNs is confined to problems
with easily available labeled datasets. While there
are many publicly accessible labeled datasets for
particular tasks in broad language contexts, there
is no other choice but to manually label data for
specific domains in business or health (e.g. cloud
services, patent categorization, clinical text). Man-
ual labeling is not only costly and time-consuming,
but it can also be difficult to find domain experts.
Thankfully, pre-trained language models (LMs)
like BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), and others have reduced the number
of required labeled datasets, but manual labeling
of domain-specific datasets remains inefficient and
time-consuming.

Active learning (AL) is a promising strategy for
dealing with a limited annotation budget and a lack

of labeled data (Settles, 2009). AL is an iterative
process in which a human-in-the-loop, sometimes
known as an oracle, labels the data and an active
learner selects which unlabeled documents should
be labeled next based on a set of rules (Fig. 1). To
train a model with fewer labeled instances, an AL
technique seeks to identify the most informative
or representative samples from a pool of unlabeled
samples. The representative samples effectively
serve as a proxy for the entire dataset. Thus, AL
techniques iteratively switch between model train-
ing with available labeled data and (ii) data selec-
tion for annotation using a stopping criterion, such
as until a preset annotation budget is exhausted or
a pre-defined performance on a held-out dataset is
reached (Margatina et al., 2021).

Figure 1: Active Learning Pipeline 1

Traditional AL approaches relied on models de-
veloped for specific tasks and trained at each AL
iteration. Recently, there have been advancements
in research that utilize pre-trained models such as
BERT which usually outperform the task-specific
models. These models can be trained with domain-
specific information using masked language model
(Margatina et al., 2021) on the unlabeled data and
adapted to the downstream tasks. However, the

1https://deepai.org/machine-learning-glossary-and-
terms/active-learning



masked language model(MLM) loss isn’t designed
to generate the discriminative embeddings as opti-
mal for the text classification task. Since MLM loss
encourages the model to predict the random mask
tokens and not explicitly encourage to summarize
the input. Hence, in this paper, we aim to find a
suitable loss function for the task of active learning
which encourages the generation of discriminative
embeddings. We believe that suitable loss functions
should be from the family of discriminative loss
functions i.e cross-entropy loss and contrastive loss
rather than generative loss functions i.e masked
language prediction loss. Fine-tuning using cross
entropy loss in NLP also tends to be unstable across
different runs, especially when supervised data is
limited, a scenario which we are tackling in this pa-
per. We hypothesize that contrastive learning loss
would be a more suitable loss for the text classifica-
tion in a low data regime set. Since the contrastive
learning loss seeks to find the commonalities be-
tween the examples of each class and contrast them
with examples from other classes. In this work, we
proposed supervised contrastive learning loss that
pushes the examples from the same class close and
the examples from different classes further apart.
To stabilize the results across different runs we gen-
erate extra positive views using dropout masking
similar to SimCSE (Gao et al., 2021).

In the active learning setting, our proposed fine-
tuning objective improves the performance of text
classification datasets. Specifically, we achieve an
accuracy of 97.7 % on the TREC dataset which is
an absolute improvement of 20 points over the state
of the art. We also achieve similar results for SST-2
dataset. WE qualitatively show the embeddings
generated from the proposed loss are significantly
discriminative than the baseline approach. We sum-
marize our contribution below.

• We proposed novel loss function for active
learning that generates multiple positives us-
ing dropout maskings.

• We showed significant improvement across
various text classification datasets, surpassing
the previous state of the art with only 1% of
the labeled training data.

• We demonstrate qualatitly our proposed loss
is generative much better embeddings than the
baseline loss functions.

2 Related Work

AL methods can be divided into two categories:
uncertainty-based sampling and diversity-based
sampling (Dasgupta, 2011). A diversity-based ap-
proach looks for samples that are unique in fea-
ture space, whereas an uncertainty-based approach
looks for examples that are difficult for the model
to identify. As a result, any AL method must bal-
ance uncertainty and diversity variety for a sampled
batch. Settles (2009) provided a summary of tra-
ditional AL methodologies along with empirical
and theoretical analysis on when active learning
could be effective. Max-entropy with model out-
puts, variation ratio, margin sampling, and BALD
(Bayesian Active Learning by Disagreement) are
some of the uncertainty-based acquisition func-
tions. While the majority of techniques focused
on the diversity-based acquisition, Ash and Adams
(2019) suggested the BADGE (Batch Active Learn-
ing by Diverse Gradient Embeddings) algorithm,
which captured both uncertainty and diversity for
batch AL algorithm for DNN models.

Recent work has shifted the focus from the ac-
quisition function to the pre-training aspect of AL.
Much of the early work on active learning in DNNs
was done in the context of Convolutional Neural
Networks (CNNs) (Gal and Ghahramani, 2016;
Sener and Savarese, 2018; Ash and Adams, 2019),
and does not take advantage of the linguistic knowl-
edge embedded in the pre-trained LMs. This gave
rise to research in transformer-based models for the
task of AL.

Margatina et al. (2021) was the first to identify
that existing language models are not suited for
the downstream task during AL and recommended
adjusting pre-trained language models with all the
available unlabelled data before using the model
for AL to gain domain-specific knowledge using
Masked Language Models (MLMs). The study
also proposes a fine-tuning approach (FT+) where
they fine-tune the model from scratch whenever
the labeled dataset size increases after each itera-
tion. Furthermore, in the study, we discover that
the acquisition strategy may be less significant than
the training method. To put it another way, a bad
training method can be a major hindrance to the
performance of a competent acquisition function,
limiting its effectiveness. This conclusion closely
aligns with our research, we focus majorly on effec-
tively adapting the pre-trained language model. We
use the results of this study as the baseline for our



Figure 2: Baseline test accuracy on multiple datasets

research. The results of baseline are shown in Fig.
2. For the scope of our project, we are focusing on
showing improvements in one binary class dataset
(SST-2) (Socher et al., 2013) and one multiclass
dataset (TREC-6) (Voorhees et al., 1999).

Liu et al. (2021), however, suggested that MLMs
are ineffective as universal lexical and sentence en-
coders without further task-specific fine-tuning on
NLI, sentence similarity, or paraphrase tasks uti-
lizing annotated task percent data. The paper pro-
posed Mirror-BERT, which converts MLMs into
effective lexical and sentence encoders even with-
out extra data using self-supervision. Mirror-BERT
uses identical and slightly modified string pairs
as positive (i.e., synonymous) fine-tuning exam-
ples, with the goal of increasing their similarity
during "identity fine-tuning." This improves per-
formance on both sentence and lexical level tests
significantly.

Realizing that a sentence-level embedding is
much more beneficial for the task of active learning,

we shift our focus to understanding sentence BERT.
Sentence BERT (SBERT) (Reimers and Gurevych,
2019) is a variant of the pretrained BERT network
that employs siamese and triplet network archi-
tectures to generate semantically relevant phrase
embeddings that can be compared using cosine-
similarity. SBERT has better performance when it
comes to tasks like information retrieval using se-
mantic search, clustering, and semantic similarity
comparison. The model is trained using the triplet
objective function were given an anchor sentence
a, negative sentence n, and positive sentence p, the
loss function aims to reduce the distance between a
and p as compared to the distance between a and n.
SBERT, even though is trained on the SNLI dataset
(Bowman et al., 2015), shows pretty good perfor-
mance on the STS dataset, proving that SBERT
does a good job in learning a sentence embedding.

Gunel et al. (2020) et. al also proposed a
supervised contrastive learning (SCL) objective
for the fine-tuning stage of the natural language



classification model. Pre-training a big language
model on an auxiliary task is followed by finetun-
ing the model on a task-specific labeled dataset
employing cross-entropy loss in state-of-the-art
natural language understanding classification
models. The cross-entropy loss, on the other
hand, has a number of flaws that can lead to
poor generalization and instability. The SCL was
proposed based on the intuition that successful
generalization necessitates capturing the similarity
between instances in one class and contrasting
them with examples in other classes. On multiple
datasets of the GLUE benchmark, the SCL loss
combined with cross-entropy achieves significant
improvements over a strong RoBERTa-Large
baseline without requiring specialized architecture,
data augmentations, memory banks, or additional
unsupervised data in few-shot learning settings.
The loss function can be summarized using the
formulas below -

L = (1− λ)LCE + λLSCL

we use this as the loss function for the scope of our
project while training BERT-Base.

Supervised contrastive learning is a field ex-
plored in great detail in computer vision. Recently
Sedghamiz et al. (2021) introduced SupCL-Seq,
which extends supervised contrastive learning from
computer vision to sequence representation op-
timization in natural language processing. The
study focused on constructing enhanced altered
perspectives by changing the dropout mask prob-
ability in conventional Transformer architectures
(e.g. BERTbase) for each representation (anchor).
The system’s ability to gather together comparable
samples (e.g., anchors and their changing perspec-
tives) while pushing apart data from other classes
is then maximized via supervised contrastive loss.
SupCLSeq outperforms BERTbase on the GLUE
benchmark for numerous classification tasks, for
example, CoLA, MRPC, RTE, and STSB. For our
research, we experiment with 5 different dropout
settings, details about which are mentioned in the
experiments section.

Other relevant literature that we came across
through the course of this project include (Gao
et al., 2021), (Liu et al., 2021), (Zhang et al., 2021),
etc. (Gao et al., 2021) defines a simple contrastive
learning framework defined for both supervised
and unsupervised setting. It is trained on the NLI
dataset for the supervised setting, whereas for the

unsupervised training, the authors sample 106 sen-
tences. The model is used to obtain a universal
sentence embedding and used for different tasks
such as text classification. (Liu et al., 2021) on the
other hand concludes that the same performance
as (Gao et al., 2021) can be obtained, if instead,
a fraction of the task-specific data is used. We
take inspiration from such findings as well for our
approach.

3 Method

To mimic the active learning setting, we initially
randomly sample 1% of the data from the entire
training set and assume that it is labeled. We use
the bert-base model as the starting point, for a fair
comparison with the baseline. Afterward, we use
different acquisition functions (Random and EN-
TROPY) to obtain 1% more data in each AL itera-
tion. This is similar to the setting used in the base-
line (Margatina et al., 2021). However, for each AL
iteration, we implement a different pre-training and
fine-tuning method because the baseline approach
of (Margatina et al., 2021) used for comparison
suffers from several drawbacks.

• The pre-training objective is the prediction of
masked tokens on the unlabelled data. This
objective is not ideal to learn good sentence
representation.

• For the task of text classification, the authors
append a logistic regression head on top of
the [CLS] token embedding and fine-tune the
model. However, this embedding is not a good
representation of a sentence as analyzed in the
work of (Reimers and Gurevych, 2019) and
(Li et al., 2020).

• The model is pre-trained on the entire domain-
specific unlabelled dataset. This requires ef-
fort to acquire the data as well as takes con-
siderable resources for training.

To mitigate the above issues and establish our hy-
pothesis we implement different methods which
are explained in the subsequent sections.

3.1 Contrastive Learning

Contrastive learning aims to learn embedding space
where the distance between different sentences rep-
resents their similarity. Similar sentences are close
to each other and vice versa. We hypothesize that



this training procedure is better for text classifi-
cation in an AL setting. Further, we utilize only
the labeled portion of the data and do not pre-train
on the entire labeled dataset. This is an important
distinction as later we can see that even with the
small percentage of data, we can achieve an accu-
racy comparable to the baseline and even higher in
some cases.

Figure 3: Cosing-Similarity objective and high level
architecture

3.2 Siamese pre-training
To evaluate the first hypothesis, we utilize a tech-
nique similar to (Li et al., 2020). We pre-train the
model on the 1% initial, randomly acquired data.
The pre-training is done in a supervised setting, by
enforcing that the sentence representation of sen-
tences belonging to the same label is closer than the
ones belonging to different labels. Firstly, we aug-
ment the data by sampling one positive pair, and
one negative pair for each sentence and repeating
the procedure 10 times. The loss is defined as:-

loss = ||inputLabel − cosineSim(u, v)||2 (1)

where u and v are sentence embeddings and in-
putLabel is “1" if the sentences are similar and
“-1" if they are different. A diagrammatic descrip-
tion of the contrastive objective can be seen in
Fig. 3. In the end, a logistic regression head is
appended and the bert-base pre-trained model is
frozen for the text-classification task. On 15% of
the data, we visualize the learned embeddings using
t-SNE (Learn) and see that the embeddings learned
through this process are much more discriminative
than the baseline (Fig 4).

3.3 Supervised contrastive learning + cross
entropy

To further improve the contrastive objective and
create an even better sentence level embedding, we
utilize the concept from (Sedghamiz et al., 2021).
Firstly, to augment the data, we pass the same sen-
tence through the network multiple times with dif-
ferent values of dropout. This creates altered views
of the same sentence and act as positive labels in
addition to the other sentences belonging to the
same class. All the other sentences are considered
negative samples. This turns out to be enough data
augmentation for contrastive training. Secondly, in
addition, we replace the cosine-similarity loss with
the Supervised Contrastive Loss (SCL) which is
defined as:-

Li
SCL =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
esim(xi,xp)/t∑

b∈B(i) e
sim(xi,xb)/t

(2)
where sim(.) stands for the similarity function
like the cosine-similarity, I is the dataset which in-
cludes augmentations as well, P (i) = {p ∈ B(i) :
yp = yi} is the positive pair set and t is the temper-
ature scaling parameter.

Lastly, for enforcing supervision for the down-
stream task as well, we add the cross entropy loss
as defined:-

LCE =
−1

N

N∑
i=1

C∑
c=1

yi,c ∗ log(ŷi,c) (3)

Therefore the overall objective function turns
out to be:-

L = (1− λ) ∗ LCE + λ ∗ LSCL (4)

3.4 Acquisition

In AL, the data required to be annotated is ob-
tained through different acquisition functions. As
explained, initially for our setting, 1% of the data
is sampled randomly. Afterward, for each iteration,
we use two different strategies to acquire more
data:-

• Random - For each iteration, we sample ran-
dom data points from the unlabelled pool and
label them to use for re-training our model.
Even with this strategy, we can achieve signif-
icant performance which proves the strength
of our training approach.



Figure 4: Visualization of sentence embeddings through t-SNE on 15% of SST-2 dataset. Red points belong to label
0 while blue points belong to label 1

Table 1: Dataset statistics

Dataset Train Val Test
SST-2 60.6k 6.7k 871
IMDB 22.5k 2.5k 25k

TREC-6 4.9k 546 500

• Entropy - The output from the model trained
from the previous AL iteration is used for de-
termining the new data to acquire. The unla-
belled data pool is passed through the model
and the entropy is calculated for each data
point using the corresponding logit values.
Then, the 1% of the data from the unlabelled
pool, which have the highest entropy values,
are sent for labeling. This technique, as shown
in the results, performs even better for differ-
ent datasets.

4 Experimental Setup

In this section, we describe our experimental setup
and demonstrate the effectiveness of the sentence
embeddings generated using contrastive learning,
on a wide range of active learning evaluation bench-
marks. We experiment with two diverse natural lan-
guage understanding tasks, including binary and
multiclass labels and varying dataset sizes (Table 1).
The first task is question classification using the six-
class version of the small TREC-6 dataset, which
consists of fact-based questions divided into broad
semantic categories (Voorhees and Tice, 2000). We
also utilize the binary version of the SST-2 dataset

to verify the effectiveness of our proposed method.
As a baseline, we utilize the Random acquisition

function, which employs uniform sampling and
chooses k data points from the unlabeled data at
each iteration. We also use the ENTROPY acquisi-
tion function and compare the results with Random
sampling. We finetune our Bert Base model twice
for each dataset, once with siamese loss and once
with Supervised Contrastive Loss (SCL). We gener-
ate results for both these finetuning methods using
Random and ENTROPY acquisition functions. We
augment the positive samples for the experiments
with the SCL finetuning method using 5 dropouts
∈ {0.0, 0.1, 0.2, 0.3, 0.4}

Each experiment is conducted with five distinct
seeds, and the optimum hyperparameter combina-
tion is chosen based on the average validation ac-
curacy of the five seeds. The average and standard
deviation of the test accuracies of both our models
are reported. We utilize the Adam optimizer with
a learning rate of 2e-5, a batch size of 16 (unless
otherwise stated), and a dropout rate of 0.1 for all
fine-tuning runs. For the experiment with the SCL
loss, we use the hyperparameter combination t =
0.3 and λ = 0.9, which is shown as the optimal
setting in (Gunel et al., 2020).

5 Experimental results and Analysis

Fig. 5 shows the accuracy with each iteration,
where we iteratively increase the number of train-
ing samples by 1% . The accuracy is mentioned on
the test set of each dataset. The accuracy is increas-
ing with the increase in data, which is the expected



Figure 5: Test accuracy during AL iterations using ENTROPY acquisition. We plot the average across 5 runs.

behavior. Our proposed method of SCL achieves
high accuracies on both datasets. We compare our
results with the baseline - (Margatina et al., 2021).
For the baseline, they have pretrained on the entire
unlabelled dataset, whereas we have finetuned our
models only on a fraction of the dataset.(1-15

For the TREC-6 dataset, we achieve much better
results even on 1% of training data using Siamese
loss as well as SCL. Moreover, for TREC-6 our
proposed method leads up to 20 points throughout
the iterations compared to the results from the base-
line. At the end of 15% of training acquisition, we
can achieve an accuracy of 97.75 on TREC-6 and
93.4 on SST2 which is much better than the base-
line. Even the model finetuned with siamese loss
shows improvements up to 15 points on TREC-6,
15% training data.

Our proposed method (SCL) shows similar
trends on SST2. The baseline accuracy is met and
surpassed only at 3% acquisition size. From there,
the gap between accuracies has further kept increas-
ing till the end of iterations. For 15% acquisition
size, SCL shows results better than the baseline by
4 points. The results with the Siamese loss model
also lies 1-2 points below the baseline. However,
considering that the baseline uses the entire unla-
beled dataset for pretraining, the results achieved
only on 1-15% using Siamese loss is a much bet-
ter improvement. This is a significant reduction in
training efforts.

6 Conclusion and Discussion

In this research, we explored the workings of the
prior state-of-the-art framework proposed for the
task of active learning. The framework used MLM
for domain adaptation on the entire unlabelled

dataset, before the fine-tuning step. However, us-
ing MLM to predict missing tokens doesn’t solve
the objective of predicting dicriminative sentence
embeddings for text classification. Moreover, the
entire idea of training on the entire dataset is rather
time-consuming and computationally expensive. In
this study, we have shown that using contrastive
learning is better than MLM for sentence represen-
tation in low-data regime. We also show that the
embeddings generated by contrastive learning are
discriminative. We train our framework on binary
class (SST-2) and multiclass dataset (Trec-6). Our
proposed framework is comparable or better even
on a fraction of the data (1-2%). Also, the proposed
loss function lead to an improvement of 10% on
the Trec-6 dataset and up to 4% on SST-2 dataset
on 15% acquired data, thereby beating the current
state-of-the-art method.

For future work, we propose research in the di-
rection of adding ‘temperature scaling’ for entropy-
based acquisition functions to obtain reliable un-
certainty estimates. We also recommend direct-
ing future studies towards incorporating our pro-
posed sentence embedding framework into differ-
ent acquisition functions for example ALPS, and
BADGE to enhance the selection strategy.

7 Contributions

All of us contributed equally during this project.
There are four major components of our project:
dataset analysis (which includes both multi-class
and binary-class classification), implementing and
analyzing pre-trained sentence embeddings, im-
plementing and analyzing supervised contrastive
learning, and detailed experimentation. We plan
to divide these four tasks among ourselves in such



a manner that we maximize our learning in all do-
mains. Therefore, there are no concrete areas that
will be associated with a particular team member,
rather we aim to work on all areas from time to
time. A big chunk of our time was also invested
in a literature survey, where all of us contributed
equally to read extensively about the field of active
learning using BERT, Few-Shot BERT, Finetuning
BERT models, Sentence embedding, Contrastive
learning, and acquisition functions. Since there
is no clear demarcation, we roughly highlight the
area where we focused during this project. To gen-
erate the results that we show in this report, Hardik
and Ritu focused on understanding the baseline
code of contrastive active learning, whereas Ansh
and Kaushal focused on how to implement Sen-
tence Bert. All of us then wrote the codebase for
‘seal’ together. Post-mid-term review, we shifted
our focus toward supervised contrastive learning
loss. Ansh and Kaushal worked on understanding
and coding the trainer function for supervised con-
trastive learning, whereas Ritu and Hardik focused
on implementing supervised contrastive learning
for SST-2 and TREC-6. Then all of us shifted
our attention towards completing the experimen-
tation for this research. While completing this re-
port, Hardik focused on Abstract and Introduction,
Kaushal focused on Related Work, Conclusion, and
Contribution, Ansh focused on Methods and Ritu
focused on the Experiments section. A significant
amount of effort was also made by all of our team-
mates to reach out to various working profession-
als to ensure that we get an industry-collaborated
project. For this project, we are collaborating with
engineers at ServiceNow.
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